Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors
- PMID: 23293632
- PMCID: PMC3533232
- DOI: 10.3389/fendo.2012.00177
Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors
Abstract
There are many orphan G protein-coupled receptors (GPCRs) for which ligands have not yet been identified. One such GPCR is the bombesin receptor subtype 3 (BRS-3). BRS-3 plays a role in the onset of diabetes and obesity. GPCRs in invertebrates are similar to those in vertebrates. Two Drosophila GPCRs (CG30106 and CG14593) belong to the BRS-3 phylogenetic subgroup. Here, we succeeded to biochemically purify the endogenous ligands of Drosophila CG30106 and CG14593 from whole Drosophila homogenates using functional assays with the reverse pharmacological technique, and identified their primary amino acid sequences. The purified ligands had been termed CCHamide-1 and CCHamide-2, although structurally identical to the peptides recently predicted from the genomic sequence searching. In addition, our biochemical characterization demonstrated two N-terminal extended forms of CCHamide-2. When administered to blowflies, CCHamide-2 increased their feeding motivation. Our results demonstrated these peptides actually present as the major components to activate these receptors in living Drosophila. Studies on the effects of CCHamides will facilitate the search for BRS-3 ligands.
Keywords: CCHamide; Drosophila; GPCR; bombesin receptor subtype 3; novel bioactive peptide.
Figures
Similar articles
-
The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2.Biochem Biophys Res Commun. 2011 Jan 7;404(1):184-9. doi: 10.1016/j.bbrc.2010.11.089. Epub 2010 Nov 24. Biochem Biophys Res Commun. 2011. PMID: 21110953
-
Purification and characterization of bioactive peptides RYamide and CCHamide in the kuruma shrimp Marsupenaeus japonicus.Gen Comp Endocrinol. 2017 May 15;246:321-330. doi: 10.1016/j.ygcen.2017.01.008. Epub 2017 Jan 4. Gen Comp Endocrinol. 2017. PMID: 28062303
-
Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides.Insect Biochem Mol Biol. 2021 Apr;131:103553. doi: 10.1016/j.ibmb.2021.103553. Epub 2021 Feb 11. Insect Biochem Mol Biol. 2021. PMID: 33582278
-
Biology and pharmacology of bombesin receptor subtype-3.Curr Opin Endocrinol Diabetes Obes. 2012 Feb;19(1):3-7. doi: 10.1097/MED.0b013e32834ec77d. Curr Opin Endocrinol Diabetes Obes. 2012. PMID: 22157398 Review.
-
Novel approaches leading towards peptide GPCR de-orphanisation.Br J Pharmacol. 2020 Mar;177(5):961-968. doi: 10.1111/bph.14950. Epub 2020 Feb 3. Br J Pharmacol. 2020. PMID: 31863461 Free PMC article. Review.
Cited by
-
A gut-secreted peptide suppresses arousability from sleep.Cell. 2023 Mar 30;186(7):1382-1397.e21. doi: 10.1016/j.cell.2023.02.022. Epub 2023 Mar 22. Cell. 2023. PMID: 36958331 Free PMC article.
-
Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.Am J Physiol Endocrinol Metab. 2014 Mar;306(6):E681-7. doi: 10.1152/ajpendo.00615.2013. Epub 2014 Jan 22. Am J Physiol Endocrinol Metab. 2014. PMID: 24452453 Free PMC article.
-
Nutrient responding peptide hormone CCHamide-2 consolidates appetitive memory.Front Behav Neurosci. 2022 Oct 19;16:986064. doi: 10.3389/fnbeh.2022.986064. eCollection 2022. Front Behav Neurosci. 2022. PMID: 36338876 Free PMC article.
-
The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.PLoS Genet. 2015 May 28;11(5):e1005209. doi: 10.1371/journal.pgen.1005209. eCollection 2015 May. PLoS Genet. 2015. PMID: 26020940 Free PMC article.
-
Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice.PLoS One. 2015 Nov 12;10(11):e0142637. doi: 10.1371/journal.pone.0142637. eCollection 2015. PLoS One. 2015. PMID: 26562312 Free PMC article.
References
-
- Beck B. (2001). KO’s and organisation of peptidergic feeding behavior mechanisms. Neurosci. Biobehav. Rev. 25 143–158 - PubMed
-
- Chintapalli V. R., Wang J., Dow J. A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39 715–720 - PubMed
-
- Colombani J., Raisin S., Pantalacci S., Radimerski T., Montagne J., Leopold P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell 114 739–749 - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
