Behavioral deficits in an Angelman syndrome model: effects of genetic background and age

Behav Brain Res. 2013 Apr 15:243:79-90. doi: 10.1016/j.bbr.2012.12.052. Epub 2013 Jan 4.

Abstract

Angelman syndrome (AS) is a severe neurodevelopmental disorder associated with disruption of maternally inherited UBE3A (ubiquitin protein ligase E3A) expression. At the present time, there is no effective treatment for AS. Mouse lines with loss of maternal Ube3a (Ube3a(m-/p+)) recapitulate multiple aspects of the clinical AS profile, including impaired motor coordination, learning deficits, and seizures. Thus, these genetic mouse models could serve as behavioral screens for preclinical efficacy testing, a critical component of drug discovery for AS intervention. However, the severity and consistency of abnormal phenotypes reported in Ube3a(m-/p+) mice can vary, dependent upon age and background strain, which is problematic for the detection of beneficial drug effects. As part of an ongoing AS drug discovery initiative, we characterized Ube3a(m-/p+) mice on either a 129S7/SvEvBrd-Hprt(b-m2) (129) or C57BL/6J (B6) background across a range of functional domains and ages to identify reproducible and sufficiently large phenotypes suitable for screening therapeutic compounds. The results from the study showed that Ube3a(m-/p+) mice have significant deficits in acquisition and reversal learning in the Morris water maze. The findings also demonstrated that Ube3a(m-/p+) mice exhibit motor impairment in a rotarod task, hypoactivity, reduced rearing and marble-burying, and deficient fear conditioning. Overall, these profiles of abnormal phenotypes can provide behavioral targets for evaluating effects of novel therapeutic strategies relevant to AS.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angelman Syndrome / genetics*
  • Angelman Syndrome / physiopathology
  • Angelman Syndrome / psychology
  • Animals
  • Behavior, Animal / physiology*
  • Disease Models, Animal*
  • Female
  • Genotype
  • Male
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neuropsychological Tests
  • Phenotype
  • Single-Blind Method
  • Ubiquitin-Protein Ligases / genetics

Substances

  • Ube3a protein, mouse
  • Ubiquitin-Protein Ligases