Exotic non-abelian anyons from conventional fractional quantum Hall states

Nat Commun. 2013;4:1348. doi: 10.1038/ncomms2340.


Non-abelian anyons--particles whose exchange noncommutatively transforms a system's quantum state--are widely sought for the exotic fundamental physics they harbour and for quantum computing applications. Numerous blueprints now exist for stabilizing the simplest type of non-anyon, defects binding Majorana modes, by interfacing widely available materials. Here we introduce a device fabricated from conventional fractional quantum Hall states and s-wave superconductors that supports exotic non-defects binding parafermionic zero modes, which generalize Majorana bound states. We show that these new modes can be experimentally identified (and distinguished from Majoranas) using Josephson measurements. We also provide a practical recipe for braiding parafermionic zero modes and show that they give rise to non-statistics. Interestingly, braiding in our setup produces a richer set of topologically protected operations when compared with the Majorana case. As a byproduct, we establish a new, experimentally realistic Majorana platform in weakly spin-orbit-coupled materials such as gallium arsenide.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.