Preserving Institutional Privacy in Distributed binary Logistic Regression
- PMID: 23304425
- PMCID: PMC3540539
Preserving Institutional Privacy in Distributed binary Logistic Regression
Abstract
Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.
Figures
Similar articles
-
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64. doi: 10.1136/amiajnl-2012-000862. Epub 2012 Apr 17. J Am Med Inform Assoc. 2012. PMID: 22511014 Free PMC article.
-
Secure Multi-pArty Computation Grid LOgistic REgression (SMAC-GLORE).BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3(Suppl 3):89. doi: 10.1186/s12911-016-0316-1. BMC Med Inform Decis Mak. 2016. PMID: 27454168 Free PMC article.
-
Privacy-preserving logistic regression with secret sharing.BMC Med Inform Decis Mak. 2022 Apr 2;22(1):89. doi: 10.1186/s12911-022-01811-y. BMC Med Inform Decis Mak. 2022. PMID: 35366870 Free PMC article.
-
Towards a Toolbox for Privacy-Preserving Computation on Health Data.Stud Health Technol Inform. 2022 Jun 6;290:234-237. doi: 10.3233/SHTI220069. Stud Health Technol Inform. 2022. PMID: 35673008 Review.
-
Musings on privacy issues in health research involving disaggregate geographic data about individuals.Int J Health Geogr. 2009 Jul 20;8:46. doi: 10.1186/1476-072X-8-46. Int J Health Geogr. 2009. PMID: 19619311 Free PMC article. Review.
Cited by
-
Privacy-preserving model learning on a blockchain network-of-networks.J Am Med Inform Assoc. 2020 Mar 1;27(3):343-354. doi: 10.1093/jamia/ocz214. J Am Med Inform Assoc. 2020. PMID: 31943009 Free PMC article.
-
Supporting Regularized Logistic Regression Privately and Efficiently.PLoS One. 2016 Jun 6;11(6):e0156479. doi: 10.1371/journal.pone.0156479. eCollection 2016. PLoS One. 2016. PMID: 27271738 Free PMC article.
-
Development of a web service for analysis in a distributed network.EGEMS (Wash DC). 2014 Dec 26;2(1):1053. doi: 10.13063/2327-9214.1053. eCollection 2014. EGEMS (Wash DC). 2014. PMID: 25848586 Free PMC article.
-
Differentially private distributed logistic regression using private and public data.BMC Med Genomics. 2014;7 Suppl 1(Suppl 1):S14. doi: 10.1186/1755-8794-7-S1-S14. Epub 2014 May 8. BMC Med Genomics. 2014. PMID: 25079786 Free PMC article.
-
pSCANNER: patient-centered Scalable National Network for Effectiveness Research.J Am Med Inform Assoc. 2014 Jul-Aug;21(4):621-6. doi: 10.1136/amiajnl-2014-002751. Epub 2014 Apr 29. J Am Med Inform Assoc. 2014. PMID: 24780722 Free PMC article.
References
-
- Wicks P, Vaughan TE, Massagli MP, et al. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nature biotechnology. 2011;29:411–414. - PubMed
-
- McGraw D. Privacy and health information technology. The Journal of Law, Medicine & Ethics. 2009;37:121–149. - PubMed
-
- Mohammed N, Fung BCM, Hung PCK, et al. Centralized and Distributed Anonymization for High-Dimensional Healthcare Data. ACM Transactions on Knowledge Discovery from Data. 2010;4(18):1–18. 33.
-
- Agrawal R, Grandison T, Johnson C, et al. Enabling the 21st century health care information technology revolution. Commun ACM. 2007;50:34–42.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources