Spermatogenesis-related change in the synthesis of the creatine kinase B-type and M-type isoforms in human spermatozoa

Mol Reprod Dev. 1990 Mar;25(3):258-62. doi: 10.1002/mrd.1080250307.

Abstract

We have demonstrated earlier that the per sperm creatine-N-phosphotransferase (CK) activity was increased in oligospermic vs. normospermic men. The increased sperm CK activity is related to higher concentrations of cellular CK, which may indicate a defect of cytoplasmic extrusion during spermatogenesis. In the present work, we examined whether in spermatozoa, similar to muscle, there is a change in the synthesis of B-CK and M-CK isoforms during cellular differentiation. In 109 normospermic and 50 oligospermic specimens (sperm concentrations 60.6 +/- 3.7 vs. 8.8 +/- 1.3 million sperm/ml; all values expressed as mean +/- SEM), the relative concentrations of the M-CK isoform (M-CK/M-CK + B-CK) were 27.2% +/- 2.1% vs. 6.7% +/- 0.9% (P less than 0.001). The per sperm CK activities showed comparable differences (0.21 +/- 0.02 vs. 0.89 +/- 0.1 CK IU/100 million sperm; P less than 0.001) in the two groups, and there was a close correlation between per sperm CK activities and M-CK concentrations (R = 0.69, P less than 0.001, N = 159). This indicates that the loss of cytoplasm and the commencement of M-CK isoform synthesis are related events during the last phase of spermatogenesis, also that the incidence of spermatozoa with incomplete cellular maturation is higher in oligospermic specimens. In characterizing the M-CK, we found that sperm (unlike muscle tissue) lack the MB hybrid of CK dimers. However, in the presence of muscle M-CK, the muscle-sperm MB-CK hybrid has formed. Thus in sperm and muscle the M-CK isoforms are structurally different, whereas the B-CKs are apparently homologous.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Creatine Kinase / biosynthesis*
  • Humans
  • Isoenzymes
  • Male
  • Oligospermia / enzymology
  • Semen / enzymology
  • Spermatogenesis / physiology*
  • Spermatozoa / enzymology*

Substances

  • Isoenzymes
  • Creatine Kinase