Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. Fall 2012;9(4):216-23.
Epub 2012 Dec 31.

In-vitro Activity of Saponins of Bauhinia Purpurea, Madhuca Longifolia, Celastrus Paniculatus and Semecarpus Anacardium on Selected Oral Pathogens

Free PMC article

In-vitro Activity of Saponins of Bauhinia Purpurea, Madhuca Longifolia, Celastrus Paniculatus and Semecarpus Anacardium on Selected Oral Pathogens

K S Jyothi et al. J Dent (Tehran). .
Free PMC article


Objective: Dental caries, periodontitis and other mucosal diseases are caused by a complex community of microorganisms. This study aimed to investigate the antimicrobial properties of saponins of four important oil yielding medicinal plant extracts on selected oral pathogens that are involved in such diseases.

Materials and methods: Saponins were extracted from Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium and purified. Antimicrobial properties of these saponins against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Staphylococcus aureus and Lactobacillus acidophilus were determined using well diffusion method. The minimum inhibitory concentration (MIC) was determined as the lowest concentration of saponins inhibiting bacterial growth after 14 h of incubation at 37°C. The bactericidal activity was evaluated using the viable cell count method.

Results: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Madhuca longifolia saponin on Streptococcus mutans MTCC 890, Streptococcus mitis and Staphylococcus aureus was 18.3 ± 0.15/34.4 ± 0.24 μg/ml, 19.0 ± 0.05/32.2 ± 0.0 μg/ml and 21.2 ± 0.35/39.0 ± 0.30 μg/ml, respectively and Bauhinia purpurea saponin on Streptococcus mutans MTCC 890, Staphylococcus aureus and Lactobacillus acidophilus was 26.4 ± 0.20/43.0 ± 0.40 μg/ml, 29.0 ± 0.30/39.6 ± 0.12 μg/ml and 20.2 ± 0.05/36.8 ± 0.23 μg/ml, respectively.

Conclusion: The strong antimicrobial activity of Madhuca longifolia and Bauhinia purpurea may be due to the presence of complex triterpenoid saponins, oleanane type triterpenoid glycosides or atypical pentacyclic triterpenoid saponin. Hence, these extracted saponins may be used in food and oral products to prevent and control oral diseases.

Keywords: Antimicrobial Agents; Caries, Dental; Madhuca Longifolia; Plants, Medicinal; Streptococcus Mutans.

Similar articles

See all similar articles

Cited by 1 article


    1. Hamada S, Koga T, Ooshima T. Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res. 1984 Mar;63(3):407–11. - PubMed
    1. Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004 May-Jun;38(3):204–11. - PubMed
    1. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother. 2002 May;46(5):1302–9. - PMC - PubMed
    1. Vahabi S, Fekrazad R, Ayremlou S, Taheri S, Zangeneh N. The effect of antimicrobial photodynamic therapy with radachlorin and toluidine blue on Streptococcus Mutans: An in vitro study. J Dent (Tehran) 2011 Spring;8(2):48–54. - PMC - PubMed
    1. Gilbert P, Das J, Foley I. Biofilm susceptibility to antimicrobials. Adv Dent Res. 1997 Apr;11(1):160–7. - PubMed

LinkOut - more resources