Increased patellofemoral pressure after TKA: an in vitro study

Knee Surg Sports Traumatol Arthrosc. 2014 Mar;22(3):500-8. doi: 10.1007/s00167-013-2372-8. Epub 2013 Jan 18.

Abstract

Purpose: Considering the discrepant results of the recent biomechanical studies, the purpose of this study was to simulate dynamic muscle-loaded knee flexion with a large number of specimens and to analyse the influence of total knee arthroplasty (TKA) without and with patellar resurfacing on the patellofemoral pressure distribution.

Methods: In 22 cadaver knee specimens, dynamic muscle-loaded knee flexion (15°-90°) was simulated with a specially developed knee simulator applying variable muscle forces on the quadriceps muscles to maintain a constant ankle force. Patellofemoral pressures were measured with flexible, pressure-sensitive sensor foils (TEKSCAN) and patellofemoral offset with an ultrasound motion-tracking system (ZEBRIS). Measurements were taken on the native knee, after total knee arthroplasty and after patellar resurfacing. Correct positioning of the patellar implant was examined radiologically.

Results: The maximal patellofemoral peak pressure partly increased from the native knee to the knee with TKA with intact patella (35°-90°, p < 0.012) and highly increased (twofold to threefold) after patellar resurfacing (20°-90°, p < 0.001). Concurrently, the patellofemoral contact area decreased and changed from a wide area distribution in the native knee, to a punctate area after TKA with intact patella and a line-shaped area after patellar resurfacing. Patellar resurfacing led to no increase in patellar thickness and patellofemoral offset.

Conclusions: Despite correct implantation of the patellar implants and largely unchanged patellofemoral offset, a highly significant increase in pressure after patellar resurfacing was measured. Therefore, from a biomechanical point of view, the preservation of the native patella seems reasonable if there is no higher grade patellar cartilage damage.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Arthroplasty, Replacement, Knee / instrumentation
  • Arthroplasty, Replacement, Knee / methods*
  • Biomechanical Phenomena
  • Humans
  • In Vitro Techniques
  • Knee Prosthesis
  • Models, Anatomic
  • Patella / surgery*
  • Patellofemoral Joint / physiology*
  • Patellofemoral Joint / surgery
  • Pressure
  • Range of Motion, Articular / physiology
  • Weight-Bearing