The history of Slavs inferred from complete mitochondrial genome sequences

PLoS One. 2013;8(1):e54360. doi: 10.1371/journal.pone.0054360. Epub 2013 Jan 14.

Abstract

To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5-16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15-28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3-4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Czech Republic
  • DNA, Mitochondrial / classification
  • DNA, Mitochondrial / genetics
  • Genome, Mitochondrial / genetics*
  • Haplotypes
  • Humans
  • Phylogeography
  • Poland
  • Ukraine

Substances

  • DNA, Mitochondrial

Grant support

This study was partially supported by the Polish Ministry of Science and Higher Education grants (nos. N N301 075839 and N N303 307737) and the Program of Presidium of Russian Academy of Sciences “Biodiversity” (grant no. 12-I-P30-12). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.