Interactions between mutants with defects in two Ca2(+)-dependent K+ currents of Paramecium tetraurelia

J Membr Biol. 1990 Apr;115(1):61-9. doi: 10.1007/BF01869106.

Abstract

Paramecium tetraurelia possesses two Ca2(+)-dependent K+ currents, activated upon depolarization IK(Ca,d), or upon hyperpolarization IK(Ca,h). The two currents are mediated by pharmacologically distinct ion channel populations. Three mutations of P. tetraurelia affect these currents. Pantophobiac A mutations (pntA) cause calmodulin sequence defects, resulting in the loss of both Ca2(+)-dependent K+ currents. A second mutation, TEA-insensitive A (teaA), greatly enhances IK(Ca,d) but has no affect on IK(Ca,h). A third mutation, restless (rst), also increases IK(Ca,d) slightly, but its principle effect is in causing an early activation of IK(Ca,h). Interactions between the products of these three genes were investigated by constructing three double mutants. Both teaA and rst restore IK(Ca,d) and IK(Ca,h) in pantophobiac A1, but the phenotypes of teaA and rst are not corrected by a second mutation. These observations may indicate a role for the gene products of teaA and rst in regulating the activity of IK(Ca,d) and IK(Ca,h), respectively.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / pharmacology*
  • Membrane Potentials
  • Mutation
  • Paramecium / genetics
  • Paramecium / metabolism*
  • Potassium / metabolism
  • Potassium Channels / metabolism*

Substances

  • Potassium Channels
  • Potassium
  • Calcium