Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:2012:1462-5.
doi: 10.1109/EMBC.2012.6346216.

Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features

Affiliations

Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features

Ragav Venkatesan et al. Annu Int Conf IEEE Eng Med Biol Soc. 2012.

Abstract

All people with diabetes have the risk of developing diabetic retinopathy (DR), a vision-threatening complication. Early detection and timely treatment can reduce the occurrence of blindness due to DR. Computer-aided diagnosis has the potential benefit of improving the accuracy and speed in DR detection. This study is concerned with automatic classification of images with microaneurysm (MA) and neovascularization (NV), two important DR clinical findings. Together with normal images, this presents a 3-class classification problem. We propose a modified color auto-correlogram feature (AutoCC) with low dimensionality that is spectrally tuned towards DR images. Recognizing the fact that the images with or without MA or NV are generally different only in small, localized regions, we propose to employ a multi-class, multiple-instance learning framework for performing the classification task using the proposed feature. Extensive experiments including comparison with a few state-of-art image classification approaches have been performed and the results suggest that the proposed approach is promising as it outperforms other methods by a large margin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources