Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;86(6 Pt 2):066112.
doi: 10.1103/PhysRevE.86.066112. Epub 2012 Dec 14.

Dead leaves and the dirty ground: low-level image statistics in transmissive and occlusive imaging environments

Affiliations

Dead leaves and the dirty ground: low-level image statistics in transmissive and occlusive imaging environments

Joel Zylberberg et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec.

Abstract

The opacity of typical objects in the world results in occlusion, an important property of natural scenes that makes inference of the full three-dimensional structure of the world challenging. The relationship between occlusion and low-level image statistics has been hotly debated in the literature, and extensive simulations have been used to determine whether occlusion is responsible for the ubiquitously observed power-law power spectra of natural images. To deepen our understanding of this problem, we have analytically computed the two- and four-point functions of a generalized "dead leaves" model of natural images with parameterized object transparency. Surprisingly, transparency alters these functions only by a multiplicative constant, so long as object diameters follow a power-law distribution. For other object size distributions, transparency more substantially affects the low-level image statistics. We propose that the universality of power-law power spectra for both natural scenes and radiological medical images, formed by the transmission of x-rays through partially transparent tissue, stems from power-law object size distributions, independent of object opacity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources