Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum

J Neurosci. 2013 Feb 6;33(6):2697-708. doi: 10.1523/JNEUROSCI.4759-12.2013.


The striatum is critically involved in the selection of appropriate actions in a constantly changing environment. The spiking activity of striatal spiny projection neurons (SPNs), driven by extrinsic glutamatergic inputs, is shaped by local GABAergic and cholinergic networks. For example, it is well established that different types of GABAergic interneurons, activated by extrinsic glutamatergic and local cholinergic inputs, mediate powerful feedforward inhibition of SPN activity. In this study, using mouse striatal slices, we show that glutamatergic and cholinergic inputs exert direct inhibitory regulation of SPN activity via activation of metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors. While pressure ejection of the group I mGluR (mGluR1/5) agonist DHPG [(S)-3,5-dihydroxyphenylglycine] equally engages both mGluR1 and mGluR5 subtypes, the mGluR-dependent component of IPSCs elicited by intrastriatal electrical stimulation is almost exclusively mediated by the mGluR1 subtype. Ca(2+) release from intracellular stores specifically through inositol 1,4,5-triphospahte receptors (IP(3)Rs) and not ryanodine receptors (RyRs) mediates this form of inhibition by gating two types of Ca(2+)-activated K(+) channels (i.e., small-conductance SK channels and large-conductance BK channels). Conversely, spike-evoked Ca(2+) influx triggers Ca(2+) release solely through RyRs to generate SK-dependent slow afterhyperpolarizations, demonstrating functional segregation of IP(3)Rs and RyRs. Finally, IP(3)-induced Ca(2+) release is uniquely observed in SPNs and not in different types of interneurons in the striatum. These results demonstrate that IP(3)-mediated activation of SK and BK channels provides a robust mechanism for glutamatergic and cholinergic inputs to selectively suppress striatal output neuron activity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Corpus Striatum / drug effects
  • Corpus Striatum / physiology*
  • Inositol 1,4,5-Trisphosphate Receptors / physiology*
  • Male
  • Methoxyhydroxyphenylglycol / analogs & derivatives
  • Methoxyhydroxyphenylglycol / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Neural Inhibition / physiology*
  • Neurons / drug effects
  • Neurons / physiology*
  • Receptors, Metabotropic Glutamate / agonists
  • Receptors, Metabotropic Glutamate / physiology*
  • Receptors, Muscarinic / physiology*


  • Inositol 1,4,5-Trisphosphate Receptors
  • Receptors, Metabotropic Glutamate
  • Receptors, Muscarinic
  • Methoxyhydroxyphenylglycol
  • 3,4-dihydroxyphenylglycol