Direct interaction of taurine with the NMDA glutamate receptor subtype via multiple mechanisms

Adv Exp Med Biol. 2013:775:45-52. doi: 10.1007/978-1-4614-6130-2_4.


Taurine has neuroprotective capabilities against glutamate-induced excitotoxicity through several identified mechanisms including opening of the Cl(-)channel associated with GABA(A)and glycine receptors, or a distinct Cl(-)channel. No existing work has however shown a direct interaction of taurine with the glutamate NMDA receptor. Here we demonstrate such direct interactions using electrophysiological and receptor binding techniques on rat medial prefrontal cortical (mPFC) slices and well-washed rat cortical membrane. Electrically evoked field potential responses were recorded in layer 4/5 of mPFC in the presence of picrotoxin to prevent opening of Cl(-)channels gated by GABA or taurine. Applied taurine markedly diminished evoked-response amplitude at the peak and latter phases of the response. These phases were predominantly sensitive to the NMDA antagonist, MK-801, but not the AMPA/kainate receptor antagonist CNQX. Furthermore, this taurine effect was blocked by APV pretreatment. Taurine (0.1 mM) decreased spermine-induced enhancement of specific ((3)H) MK-801 binding to rat cortical membrane in the presence of glycine, though it was ineffective in the absence of spermine. Our preliminary work shows that taurine diminished the apparent affinity of NMDA receptor to glycine in the presence of spermine. These results indicate that taurine may directly interact with the NMDA receptor through multiple mechanisms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • Action Potentials / drug effects
  • Animals
  • Dizocilpine Maleate / pharmacology
  • Glycine / pharmacology
  • In Vitro Techniques
  • Male
  • Prefrontal Cortex / drug effects
  • Prefrontal Cortex / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Taurine / metabolism*
  • Taurine / pharmacology


  • Receptors, N-Methyl-D-Aspartate
  • Taurine
  • Dizocilpine Maleate
  • 2-Amino-5-phosphonovalerate
  • Glycine