Eisosome distribution and localization in the meiotic progeny of Aspergillus nidulans

Fungal Genet Biol. 2013 Apr;53:84-96. doi: 10.1016/j.fgb.2013.01.002. Epub 2013 Feb 6.


In the model filamentous fungus Aspergillus nidulans, PilA and PilB, two homologues of the Saccharomyces cerevisiae eisosome proteins Pil1/Lsp1, and SurG, a strict orthologue of Sur7, are assembled and form tightly packed structures in conidiospores. As A. nidulans differs in its reproduction pattern from the Saccharomycotina in that it has the ability to reproduce through two different types of spores, conidiospores and ascospores, the products of the asexual and the sexual cycle respectively, we investigated the eisosome distribution and localization during the sexual cycle. Our results show that core eisosome proteins PilA, PilB and SurG are not expressed in hülle cells or early ascospores, but are expressed in mature ascospores. All eisosomal proteins form punctate structures at the membrane of late ascospores. In mature but quiescent ascospores, PilA forms static punctate structures at the plasma membrane. PilB also was observed at the ascospore membrane as well, with higher concentration at the areas where the two halves of ascospores are joined together. Finally, SurG was localized both at the membrane of ascospores and perinuclearly. In germlings originating from ascospores the punctate structures were shown to be composed only of PilA. PilB is diffused in the cytoplasm and SurG was located in vacuoles and endosomes. This altered localization is identical to that found in germlings originated from conidiospores. In germinated ascospores PilA foci did not colocalise with the highly mobile and transient peripheral punctate structures of AbpA, a marker for sites of clathrin-mediated endocytosis. Deletions of each one or all the three core eisosomal genes do not affect viability or germination of ascospores. In the presence of myriocin - a specific inhibitor of sphingolipid biosynthesis - PilA-GFP foci of ascospore germlings were less numerous and their distribution was significantly altered, suggesting a correlation between PilA foci and sphingolipid biosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspergillus nidulans / genetics
  • Aspergillus nidulans / metabolism*
  • Cell Membrane / metabolism*
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Deletion
  • Gene Expression
  • Gene Expression Regulation, Fungal
  • Intracellular Space / metabolism
  • Phenotype
  • Protein Binding
  • Protein Transport
  • Sphingolipids / metabolism
  • Spores, Fungal / genetics
  • Spores, Fungal / metabolism


  • Fungal Proteins
  • Sphingolipids