Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Jun 1;22(11):2303-11.
doi: 10.1093/hmg/ddt064. Epub 2013 Feb 12.

Comparing Methods for Performing Trans-Ethnic Meta-Analysis of Genome-Wide Association Studies

Affiliations
Comparative Study

Comparing Methods for Performing Trans-Ethnic Meta-Analysis of Genome-Wide Association Studies

Xu Wang et al. Hum Mol Genet. .

Abstract

Genome-wide association studies (GWASs) have discovered thousands of variants that are associated with human health and disease. Whilst early GWASs have primarily focused on genetically homogeneous populations of European, East Asian and South Asian ancestries, the next-generation genome-wide surveys are starting to pool studies from ethnically diverse populations within a single meta-analysis. However, classical epidemiological strategies for meta-analyses that assume fixed- or random-effects may not be the most suitable approaches to combine GWAS findings as these either confer low statistical power or identify mostly loci where the variants carry homogeneous effect sizes that are present in most of the studies. In a trans-ethnic meta-analysis, it is likely that some genetic loci will exhibit heterogeneous effect sizes across the populations. This may be due to differences in study designs, differences arising from the interactions with other genetic variants, or genuine biological differences attributed to environmental, dietary or lifestyle factors that modulate the influence of the genes. Here we compare different strategies for meta-analyzing GWAS across genetically diverse populations, where we intentionally vary the effect sizes present across the different populations. We subsequently applied the methods that yielded the highest statistical power to a trans-ethnic meta-analysis of seven GWAS in type 2 diabetes, and showed that these methods identified bona fide associations that would otherwise have been missed by the classical strategies.

Similar articles

See all similar articles

Cited by 39 articles

  • Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals.
    Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, Akiyama M, Ikezaki H, Furusyo N, Shimizu S, Yamamoto K, Hirata M, Okada R, Kawai S, Kawaguchi M, Nishida Y, Shimanoe C, Ibusuki R, Takezaki T, Nakajima M, Takao M, Ozaki E, Matsui D, Nishiyama T, Suzuki S, Takashima N, Kita Y, Endoh K, Kuriki K, Uemura H, Arisawa K, Oze I, Matsuo K, Nakamura Y, Mikami H, Tamura T, Nakashima H, Nakamura T, Kato N, Matsuda K, Murakami Y, Matsubara T, Naito M, Kubo M, Kamatani Y, Shinomiya N, Yokota M, Wakai K, Okada Y, Matsuo H. Nakatochi M, et al. Commun Biol. 2019 Apr 8;2:115. doi: 10.1038/s42003-019-0339-0. eCollection 2019. Commun Biol. 2019. PMID: 30993211 Free PMC article.
  • Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.
    Chauhan G, Adams HHH, Satizabal CL, Bis JC, Teumer A, Sargurupremraj M, Hofer E, Trompet S, Hilal S, Smith AV, Jian X, Malik R, Traylor M, Pulit SL, Amouyel P, Mazoyer B, Zhu YC, Kaffashian S, Schilling S, Beecham GW, Montine TJ, Schellenberg GD, Kjartansson O, Guðnason V, Knopman DS, Griswold ME, Windham BG, Gottesman RF, Mosley TH, Schmidt R, Saba Y, Schmidt H, Takeuchi F, Yamaguchi S, Nabika T, Kato N, Rajan KB, Aggarwal NT, De Jager PL, Evans DA, Psaty BM, Rotter JI, Rice K, Lopez OL, Liao J, Chen C, Cheng CY, Wong TY, Ikram MK, van der Lee SJ, Amin N, Chouraki V, DeStefano AL, Aparicio HJ, Romero JR, Maillard P, DeCarli C, Wardlaw JM, Hernández MDCV, Luciano M, Liewald D, Deary IJ, Starr JM, Bastin ME, Muñoz Maniega S, Slagboom PE, Beekman M, Deelen J, Uh HW, Lemmens R, Brodaty H, Wright MJ, Ames D, Boncoraglio GB, Hopewell JC, Beecham AH, Blanton SH, Wright CB, Sacco RL, Wen W, Thalamuthu A, Armstrong NJ, Chong E, Schofield PR, Kwok JB, van der Grond J, Stott DJ, Ford I, Jukema JW, Vernooij MW, Hofman A, Uitterlinden AG, van der Lugt A, Wittfeld K, Grabe HJ, Hosten N, von Sarnowski B, Völker U, Levi C, Jimenez-Conde J, Sharma P, Sudlow CLM, Rosand J, Woo D, Cole JW, Meschia JF, Slowik A, Thijs V, Lindgren A, Melander O, Grewal RP, Rundek T, Rexrode K, Rothwell PM, Arnett DK, Jern C, Johnson JA, Benavente OR, Wasssertheil-Smoller S, Lee JM, Wong Q, Mitchell BD, Rich SS, McArdle PF, Geerlings MI, van der Graaf Y, de Bakker PIW, Asselbergs FW, Srikanth V, Thomson R, McWhirter R, Moran C, Callisaya M, Phan T, Rutten-Jacobs LCA, Bevan S, Tzourio C, Mather KA, Sachdev PS, van Duijn CM, Worrall BB, Dichgans M, Kittner SJ, Markus HS, Ikram MA, Fornage M, Launer LJ, Seshadri S, Longstreth WT Jr, Debette S; Stroke Genetics Network (SiGN), the International Stroke Genetics Consortium (ISGC), METASTROKE, Alzheimer's Disease Genetics Consortium (ADGC), and the Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Chauhan G, et al. Neurology. 2019 Jan 16;92(5):e486-503. doi: 10.1212/WNL.0000000000006851. Online ahead of print. Neurology. 2019. PMID: 30651383 Free PMC article.
  • Leveraging Ancestral Heterogeneity to Map Shared Genetic Risk Loci in Pediatric Steroid-Sensitive Nephrotic Syndrome.
    Hjorten R, Skorecki K. Hjorten R, et al. J Am Soc Nephrol. 2018 Jul;29(7):1793-1794. doi: 10.1681/ASN.2018050465. Epub 2018 Jun 14. J Am Soc Nephrol. 2018. PMID: 29903749 Free PMC article. No abstract available.
  • Whole-genome association study of antibody response to Epstein-Barr virus in an African population: a pilot.
    Sallah N, Carstensen T, Wakeham K, Bagni R, Labo N, Pollard MO, Gurdasani D, Ekoru K, Pomilla C, Young EH, Fatumo S, Asiki G, Kamali A, Sandhu M, Kellam P, Whitby D, Barroso I, Newton R. Sallah N, et al. Glob Health Epidemiol Genom. 2017 Nov 27;2:e18. doi: 10.1017/gheg.2017.16. eCollection 2017. Glob Health Epidemiol Genom. 2017. PMID: 29868224 Free PMC article.
  • Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry.
    Irvin MR, Sitlani CM, Noordam R, Avery CL, Bis JC, Floyd JS, Li J, Limdi NA, Srinivasasainagendra V, Stewart J, de Mutsert R, Mook-Kanamori DO, Lipovich L, Kleinbrink EL, Smith A, Bartz TM, Whitsel EA, Uitterlinden AG, Wiggins KL, Wilson JG, Zhi D, Stricker BH, Rotter JI, Arnett DK, Psaty BM, Lange LA. Irvin MR, et al. Pharmacogenomics J. 2019 Feb;19(1):97-108. doi: 10.1038/s41397-018-0021-9. Epub 2018 Jun 1. Pharmacogenomics J. 2019. PMID: 29855607 Free PMC article.
See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback