Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes

J Am Chem Soc. 2013 Mar 20;135(11):4199-202. doi: 10.1021/ja312604r. Epub 2013 Mar 8.

Abstract

We report a facile synthesis of highly monodisperse colloidal Sn and Sn/SnO2 nanocrystals with mean sizes tunable over the range 9-23 nm and size distributions below 10%. For testing the utility of Sn/SnO2 nanocrystals as an active anode material in Li-ion batteries, a simple ligand-exchange procedure using inorganic capping ligands was applied to facilitate electronic connectivity within the components of the nanocrystalline electrode. Electrochemical measurements demonstrated that 10 nm Sn/SnO2 nanocrystals enable high Li insertion/removal cycling stability, in striking contrast to commercial 100-150 nm powders of Sn and SnO2. In particular, reversible Li-storage capacities above 700 mA h g(-1) were obtained after 100 cycles of deep charging (0.005-2 V) at a relatively high current of 1000 mA h g(-1).