Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity

Wiley Interdiscip Rev RNA. 2013 Mar-Apr;4(2):217-31. doi: 10.1002/wrna.1155. Epub 2013 Feb 15.

Abstract

The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Exosomes / genetics
  • Exosomes / metabolism*
  • Humans
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism*
  • RNA, Nuclear / genetics
  • RNA, Nuclear / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Species Specificity

Substances

  • Multiprotein Complexes
  • RNA, Nuclear
  • Saccharomyces cerevisiae Proteins