Distinctive serum miRNA profile in mouse models of striated muscular pathologies

PLoS One. 2013;8(2):e55281. doi: 10.1371/journal.pone.0055281. Epub 2013 Feb 13.

Abstract

Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs) as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophy type 2D (LGMD2D), limb-girdle muscular dystrophy type 2C (LGMD2C), Emery-Dreifuss muscular dystrophy (EDMD) and hypertrophic cardiomyopathy (HCM). Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Mice
  • MicroRNAs / blood
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / pathology
  • Muscular Dystrophies / genetics
  • Muscular Dystrophies / metabolism*
  • Muscular Dystrophies / pathology

Substances

  • MicroRNAs

Grant support

This study was financially supported by the Association Française contre les Myopathies (AFM); by ADNA (Advanced Diagnostics for New Therapeutic Approaches); the Institut National de la Santé et de la Recherche Médicale (INSERM); the Université Pierre et Marie Curie Paris 06; the Centre National de la Recherche Scientifique (CNRS); the bi-national grant from the Agence Nationale de la Recherche (ANR, France) and the Bundesministerium fur Bildung und Forshung (BMBF, Germany) (ANR-BMBF-09-GENO-107). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.