Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(2):e57314.
doi: 10.1371/journal.pone.0057314. Epub 2013 Feb 20.

CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition

Affiliations

CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition

Adrian Biddle et al. PLoS One. 2013.

Abstract

CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. CD44 standard and variant exons.
A representation of the 9 standard and 9 variant exons of CD44, showing the names of each variant exon and where they fall in the extracellular region of the protein product. The position of the “Epitope 1” region recognised by the CD44 antibody used in these studies is indicated.
Figure 2
Figure 2. CD44 expression in EMT and non-EMT CSCs.
(A) FACS sorting of CA1, Met1 and Met2 cells by expression of CD44 (using the “epitope 1” antibody that detects all forms of CD44) and ESA. The CD44highESAlow and CD44highESAhigh sub-populations are gated and show higher levels of staining of CD44highESAlow cells for CD44. (B) QPCR analysis of CD44 variant gene expression in CD44highESAlow cells relative to the CD44highESAhigh cells for the CA1, Met1 and Met2 lines shows marked differences in the isoform expression patterns.
Figure 3
Figure 3. Trypsin treatment prevents cell surface detection of CD44 variant isoforms.
Histograms showing expression, assessed by FACS analyses of CA1 cells, of CD44 (“epitope 1” antibody, top left panel) and of CD44 variants after treatment with trypsin (green) or enzyme-free buffer (blue). The isotype control is in red.
Figure 4
Figure 4. Detection of CD44 variant isoform expression on the CD44highESAhigh cell sub-population.
FACS analysis of CD44 variant isoform expression on cells of the CA1 (A), Met1 (B) and Met2 (C) cell lines isolated using enzyme-free buffer showing the CD44 variants on the y-axis and ESA expression on the x-axis. For all cell lines, similar total levels of CD44 are detected on the CD44highESAlow and CD44highESAhigh cells but lower levels of the v3, v5, v6 and v9 isoforms are detected on the CD44highESAlow cells. (D) FACS analysis of CD44 (y-axis) and ESA (x-axis) expression on CA1 (top), Met1 (middle) and Met2 (bottom) cells treated with either trypsin (left) or enzyme-free buffer (right). Loss of detection of CD44 variant isoforms after trypsin treatment results in a large increase in the fraction of motile CSCs within the 5% of cells showing the highest CD44 expression. Representative plots. (E) Quantification of the experiments depicted in figure 4D, showing the percentage of EMT CSCs within the 5% CD44high population after treatment with trypsin or enzyme-free buffer.
Figure 5
Figure 5. Enzyme treatment decreases the size of the CD44-positive population.
Following isolation with trypsin, Accutase or enzyme-free (EF) buffer, CA1 cells were subject to FACS analysis either unstained, stained with an isotype control, or stained for CD44. Unstained and isotype-stained cells were unaffected by method of isolation but marked differences in the proportion of cells classified as staining positive for CD44 are seen.
Figure 6
Figure 6. Differential staining for CD44 on cells isolated from fresh tumour samples using different methods.
Panels A–D illustrate the procedure used to identify staining patterns. Cell smears were prepared and co-stained with DAPI (A) with a pan-keratin antibody (B) and with the CD44 “epitope 1” antibody (C). These panels show images manipulated by adjusting capture thresholds in PhotoShop to identify cells with set levels of staining above a background level. For each field, this level was held constant to generate the three images, one for each fluorochrome, containing only the stained cells. These images were then combined, slightly out of lateral register, to allow identification of cells with absent or low levels staining for CD44 or keratin (blue nuclei only), staining for CD44 only (CD44+), keratin only (K+), or both CD44 and keratin (CD44+K+). Treatment with trypsin+collagenase or collagenase alone consistently reduced the fraction of cells that was positive for CD44 (E) and for both CD44 and keratin (F). Displaying the 5 assayed tumours individually (G) demonstrates the striking variation in CD44 staining between tumours, and that this variation is reduced following enzymatic treatment. Statistical analysis was conducted using a Mann-Whitney test.

Similar articles

Cited by

References

    1. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, et al. (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339–9344. - PubMed
    1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988. - PMC - PubMed
    1. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, et al. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104: 973–978. - PMC - PubMed
    1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737. - PubMed
    1. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828. - PubMed

Publication types

MeSH terms