Alpha-tomatine attenuation of in vivo growth of subcutaneous and orthotopic xenograft tumors of human prostate carcinoma PC-3 cells is accompanied by inactivation of nuclear factor-kappa B signaling

PLoS One. 2013;8(2):e57708. doi: 10.1371/journal.pone.0057708. Epub 2013 Feb 21.

Abstract

Background: Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.

Methodology/principal findings: In the present study we show that suppression of NF-κB activation by α-tomatine occurs through inhibition of I kappa B alpha (IκBα) kinase activity, leading to sequential suppression of IκBα phosphorylation, IκBα degradation, NF-κB/p65 phosphorylation, and NF-κB p50/p65 nuclear translocation. Consistent with its ability to induce apoptosis, α-tomatine reduced TNF-α induced activation of the pro-survival mediator Akt and its inhibition of NF-κB activation was accompanied by significant reduction in the expression of NF-κB-dependent anti-apoptotic (c-IAP1, c-IAP2, Bcl-2, Bcl-xL, XIAP and survivin) proteins. We also evaluated the antitumor activity of α-tomatine against PC-3 cell tumors grown subcutaneously and orthotopically in mice. Our data indicate that intraperitoneal administration of α-tomatine significantly attenuates the growth of PC-3 cell tumors grown at both sites. Analysis of tumor material indicates that the tumor suppressing effects of α-tomatine were accompanied by increased apoptosis and lower proliferation of tumor cells as well as reduced nuclear translocation of the p50 and p65 components of NF-κB.

Conclusion/significance: Our study provides first evidence for in vivo antitumor efficacy of α-tomatine against the human androgen-independent prostate cancer. The potential usefulness of α-tomatine in prostate cancer prevention and therapy requires further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / genetics
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Animals
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects
  • Apoptosis Regulatory Proteins / antagonists & inhibitors
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism
  • Cell Proliferation / drug effects
  • Choristoma
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • I-kappa B Kinase / antagonists & inhibitors
  • I-kappa B Kinase / genetics
  • I-kappa B Kinase / metabolism
  • Male
  • Mice
  • NF-kappa B / antagonists & inhibitors
  • NF-kappa B / genetics*
  • NF-kappa B / metabolism
  • Neoplasm Transplantation
  • Phosphorylation / drug effects
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology
  • Protein Subunits / antagonists & inhibitors
  • Protein Subunits / genetics*
  • Protein Subunits / metabolism
  • Protein Transport / drug effects
  • Signal Transduction / drug effects
  • Tomatine / analogs & derivatives*
  • Tomatine / pharmacology

Substances

  • Antineoplastic Agents, Phytogenic
  • Apoptosis Regulatory Proteins
  • NF-kappa B
  • Protein Subunits
  • alpha-tomatine
  • Tomatine
  • I-kappa B Kinase

Grants and funding

This work was funded by Malaysian Ministry of Higher Education (MOHE) High Impact Research Grant (HIRG) E000002-20001 and University Malaya Research Grant (UMRG) RG161/09HTM. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.