Aging impairs the sensitivity of skeletal muscle to anabolic stimuli, such as amino acids and resistance exercise. Beef is a nutrient-rich source of dietary protein capable of stimulating muscle protein synthesis (MPS) rates in older men at rest. To date, the dose-response of myofibrillar protein synthesis to graded ingestion of protein-rich foods, such as beef, has not been determined. We aimed to determine the dose-response of MPS with and without resistance exercise to graded doses of beef ingestion. Thirty-five middle-aged men (59 ± 2 years) ingested 0 g, 57 g (2 oz; 12 g protein), 113 g (4 oz; 24 g protein), or 170 g (6 oz; 36 g protein) of (15% fat) ground beef (n = 7 per group). Subjects performed a bout of unilateral resistance exercise to allow measurement of the fed state and the fed plus resistance exercise state within each dose. A primed constant infusion of l-[1-(13)C]leucine was initiated to measure leucine oxidation and of l-[ring-(13)C(6)]phenylalanine was initiated to measure myofibrillar MPS. Myofibrillar MPS was increased with ingestion of 170 g of beef to a greater extent than all other doses at rest and after resistance exercise. There was more leucine oxidation with ingestion of 113 g of beef than with 0 g and 57 g, and it increased further after ingestion of 170 g of beef (all p < 0.05). Ingestion of 170 g of beef protein is required to stimulate a rise in myofibrillar MPS over and above that seen with lower doses. An isolated bout of resistance exercise was potent in stimulating myofibrillar MPS, and acted additively with feeding.