Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors

PLoS One. 2013;8(2):e56336. doi: 10.1371/journal.pone.0056336. Epub 2013 Feb 18.


GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence of a small, highly conserved and repeated "GASP motif" of 15 amino acids. We further showed using GST-pull down, surface plasmon resonance and co-immunoprecipitation experiments that the central domain of GASP-1, which contains 22 GASP motifs, is essential for the interaction with GPCRs. We then used site directed mutagenesis and competition experiments with synthetic peptides to demonstrate that the GASP motif, and particularly its highly conserved core sequence SWFW, is critically involved in the interaction with GPCRs. Overall, our data show that several members of the GASP family interact with GPCRs and highlight the presence within GASPs of a novel protein-protein interaction motif that might represent a new target to investigate the involvement of GASPs in the modulation of the activity of GPCRs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carrier Proteins / chemistry
  • Carrier Proteins / metabolism
  • Cell Line
  • Humans
  • Peptides / chemistry
  • Peptides / metabolism
  • Protein Binding
  • Protein Interaction Domains and Motifs*
  • Protein Interaction Mapping*
  • Receptors, G-Protein-Coupled / chemistry
  • Receptors, G-Protein-Coupled / metabolism*
  • Vesicular Transport Proteins / chemistry
  • Vesicular Transport Proteins / metabolism*


  • Carrier Proteins
  • GPRASP1 protein, human
  • Peptides
  • Receptors, G-Protein-Coupled
  • Vesicular Transport Proteins

Grant support

This work was supported by Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche (MENSER) fellowship, Association pour la Recherche sur le Cancer (N°3423), Fondation pour la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, the Lundbeck Foundation Center for Biomembranes and Nanomedicine, and the programs BioScaRT and UNIK Synthetic Biology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.