Nucleation and Growth of Chrysotile Nanotubes in H2SiO3/MgCl2/NaOH Medium at 90 to 300 °C

Chemistry. 2013 Apr 22;19(17):5417-24. doi: 10.1002/chem.201204105. Epub 2013 Feb 27.


Herein, we report new insights into the nucleation and growth processes of chrysotile nanotubes by using batch and semi-continuous experiments. For the synthesis of this highly carcinogenic material, the influences of temperature (90, 200, and 300 °C), Si/Mg molar ratio, and reaction time were investigated. From the semi-continuous experiments (i.e., sampling of the reacting suspension over time) and solid-state characterization of the collected samples by XRPD, TGA, FTIR spectroscopy, and FESEM, three main reaction steps were identified for chrysotile nucleation and growth at 300 °C: 1) formation of the proto-serpentine precursor within the first 2 h of the reaction, accompanied by the formation of brucite and residual silica gel; 2) spontaneous nucleation and growth of chrysotile between about 3 and 8 h reaction time, through a progressive dissolution of the proto-serpentine, brucite, and residual silica gel; and 3) Ostwald ripening growth of chrysotile from 8 to 30 h reaction time, as attested to by BET and FESEM measurements. Complementary results from batch experiments confirmed a significant influence of the reaction temperature on the kinetics of chrysotile formation. However, FESEM observations revealed some formation of chrysotile nanotubes at low temperatures (90 °C) after 14 days of reaction. Finally, doubling the Si/Mg molar ratio promoted the precipitation of pure smectite (stevensite-type) under the same P (8.2 MPa)/T (300 °C)/pH (13.5) conditions.