Causes and implications of codon usage bias in RNA viruses

PLoS One. 2013;8(2):e56642. doi: 10.1371/journal.pone.0056642. Epub 2013 Feb 25.

Abstract

Choice of synonymous codons depends on nucleotide/dinucleotide composition of the genome (termed mutational pressure) and relative abundance of tRNAs in a cell (translational pressure). Mutational pressure is commonly simplified to genomic GC content; however mononucleotide and dinucleotide frequencies in different genomes or mRNAs may vary significantly, especially in RNA viruses. A series of in silico shuffling algorithms were developed to account for these features and analyze the relative impact of mutational pressure components on codon usage bias in RNA viruses. Total GC content was a poor descriptor of viral genome composition and causes of codon usage bias. Genomic nucleotide content was the single most important factor of synonymous codon usage. Moreover, the choice between compatible amino acids (e.g., leucine and isoleucine) was strongly affected by genomic nucleotide composition. Dinucleotide composition at codon positions 2-3 had additional effect on codon usage. Together with mononucleotide composition bias, it could explain almost the entire codon usage bias in RNA viruses. On the other hand, strong dinucleotide content bias at codon position 3-1 found in some viruses had very little effect on codon usage. A hypothetical innate immunity sensor for CpG in RNA could partially explain the codon usage bias, but due to dependence of virus translation upon biased host translation machinery, experimental studies are required to further explore the source of dinucleotide bias in RNA viruses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Composition / genetics
  • Codon / genetics*
  • Immunity, Innate / genetics
  • RNA Viruses / genetics*
  • RNA Viruses / immunology

Substances

  • Codon

Grants and funding

This work was supported by Deutsche Forschungsgemeinschaft [grant DR772/2-1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.