Cannabinoid type 1 receptor mediates depot-specific effects on differentiation, inflammation and oxidative metabolism in inguinal and epididymal white adipocytes

Nutr Diabetes. 2011 Sep 5;1(9):e16. doi: 10.1038/nutd.2011.12.

Abstract

Objective: The endocannabinoid system is a major component in the control of energy metabolism. Cannabinoid 1 (CB1)-receptor blockade induces weight loss and reduces the risk to develop the metabolic syndrome with its associated cardiovascular complications. These effects are mediated by central and peripheral pathways. Interestingly, weight loss is mainly achieved by a reduction of visceral fat mass. We analyzed fat depot-specific differences on adipocyte differentiation, inflammation and oxidative metabolism in CB1-receptor knockout cells.

Materials and methods: We used newly generated epididymal/inguinal adipose cell lines from CB1-receptor knockout mice. Differences in differentiation were measured by fat-specific Oil Red O staining and quantitative analysis of key differentiation markers. Induction of apoptosis was evaluated by cell death detection and investigation of p53 phosphorylation. Inflammation markers were quantified by real-time PCR. For analyzing the process of transdifferentiation we measured oxygen consumption and mitochondrial biogenesis.

Results: Differentiation was reduced in visceral adipocytes from CB1-receptor knockout mice as compared with wild-type controls. Moreover, we found an induction of apoptosis in these cells. In contrast, subcutaneous adipocytes from CB1-receptor knockout mice showed an accelerated differentiation and a reduced rate of apoptosis. Inflammation was increased in visceral fat cells, as analyzed by the expression pattern of interleukin-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor-α, whereas in subcutaneous adipocytes these markers were decreased. Furthermore, subcutaneous CB1-receptor knockout cells were more sensitive toward a conversion into a brown fat phenotype. Uncoupling protein-1 as well as PGC-1α expression was significantly elevated. This was accompanied by an increase in mitochondrial biogenesis and oxygen consumption.

Conclusion: In conclusion, we found depot-specific effects on differentiation, apoptosis, inflammation and oxidative metabolism in CB1-receptor knockout cells. Thus, CB1-receptor-mediated pathways differentially target adipose tissue depots to a dual effect that minimizes cardiometabolic risk, on the one hand, by diminishing visceral fat, and that enhances thermogenesis in subcutaneous adipocytes, on the other.