Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells

Int J Oncol. 2013 May;42(5):1560-8. doi: 10.3892/ijo.2013.1849. Epub 2013 Mar 5.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / pharmacology
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / metabolism*
  • Carcinoma, Squamous Cell / pathology
  • Cell Line, Tumor
  • Cell Proliferation
  • Cell Transformation, Neoplastic / genetics*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Head and Neck Neoplasms / genetics
  • Head and Neck Neoplasms / metabolism*
  • Head and Neck Neoplasms / pathology
  • Humans
  • Pyridines / pharmacology
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / metabolism*
  • Signal Transduction
  • Squamous Cell Carcinoma of Head and Neck

Substances

  • Amides
  • LPAR4 protein, human
  • Pyridines
  • Receptors, Purinergic P2
  • Y 27632