Estimating Heterogeneous Treatment Effects with Observational Data

Sociol Methodol. 2012 Aug;42(1):314-347. doi: 10.1177/0081175012452652.


Individuals differ not only in their background characteristics, but also in how they respond to a particular treatment, intervention, or stimulation. In particular, treatment effects may vary systematically by the propensity for treatment. In this paper, we discuss a practical approach to studying heterogeneous treatment effects as a function of the treatment propensity, under the same assumption commonly underlying regression analysis: ignorability. We describe one parametric method and two non-parametric methods for estimating interactions between treatment and the propensity for treatment. For the first method, we begin by estimating propensity scores for the probability of treatment given a set of observed covariates for each unit and construct balanced propensity score strata; we then estimate propensity score stratum-specific average treatment effects and evaluate a trend across them. For the second method, we match control units to treated units based on the propensity score and transform the data into treatment-control comparisons at the most elementary level at which such comparisons can be constructed; we then estimate treatment effects as a function of the propensity score by fitting a non-parametric model as a smoothing device. For the third method, we first estimate non-parametric regressions of the outcome variable as a function of the propensity score separately for treated units and for control units and then take the difference between the two non-parametric regressions. We illustrate the application of these methods with an empirical example of the effects of college attendance on womens fertility.

Keywords: causal effects; heterogeneity; matching; propensity scores; treatment effects.