Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-ion microbattery anodes with enhanced areal capacity

ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2634-40. doi: 10.1021/am400055a. Epub 2013 Mar 29.

Abstract

The areal capacity of lithium-ion microbatteies (LIMBs) can be potentially increased by adopting a three-dimensional (3D) architectured electrode. Herein, we report the novel 3D Ni/SnOx/C hybrid nanostructured arrays that were built directly on current collectors via a facile hydrothermal method followed by a calcination-reduction process. Branched SnO2 nanorods grew uniformly on Ni2(OH)2CO3 nanowall arrays, resulting in the formation of precursors with a 3D interconnected architecture. By using ethylene glycol as the reducing agent, the glucose-coated SnO2/Ni2(OH)2CO3 precursors were evolved into an interesting 3D Ni/SnOx/C hybrid nanostructured arrays within the calcination treatment. Compared to conventional 2D SnOx/C nanorod arrays, the electrode of 3D Ni/SnOx/C hybrid nanostructured arrays exhibited enhanced lithium storage capacity per unit area, preferable rate capability and improved cycling performance when tested for LIMBs. The superior performance might be attributed to the open-up Ni frameworks that can not only serve as effective channels for electrons transport and Li+ diffusion but also help to accommodate the large volume changes upon lithiation/delithiation.

Publication types

  • Research Support, Non-U.S. Gov't