The effects of temporal modulation and spatial location on the perceived spatial frequency of visual patterns

Percept Psychophys. 1990 May;47(5):449-56. doi: 10.3758/bf03208178.

Abstract

The perceived spatial frequency of a visual pattern can increase when a pattern drifts or is presented at a peripheral visual field location, as compared with a foveally viewed, stationary pattern. We confirmed previously reported effects of motion on foveally viewed patterns and of location on stationary patterns and extended this analysis to the effect of motion on peripherally viewed patterns and the effect of location on drifting patterns. Most central to our investigation was the combined effect of temporal modulation and spatial location on perceived spatial frequency. The group data, as well as the individual sets of data for most observers, are consistent with the mathematical concept of separability for the effects of temporal modulation and spatial location on perceived spatial frequency. Two qualitative psychophysical models suggest explanations for the effects. Both models assume that the receptive-field sizes of a set of underlying psychophysical mechanisms monotonically change as a function of temporal modulation or visual field location, whereas the perceptual labels attached to a set of channels remain invariant. These models predict that drifting or peripheral viewing of a pattern will cause a shift in the perceived spatial frequency of the pattern to a higher apparent spatial frequency.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Attention
  • Form Perception*
  • Humans
  • Motion Perception*
  • Orientation*
  • Pattern Recognition, Visual*
  • Psychophysics
  • Visual Fields*