Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea

Biotechnol Bioeng. 2013 Sep;110(9):2323-32. doi: 10.1002/bit.24904. Epub 2013 Apr 22.


The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and tri-glycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production.

Keywords: alkanes; fatty acids; fatty alcohols; hydroxylation; peroxygenase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agaricales / enzymology*
  • Agaricales / genetics
  • Alkanes / chemistry
  • Alkanes / metabolism*
  • Fatty Acids / chemistry
  • Fatty Acids / metabolism*
  • Fatty Alcohols / chemistry
  • Fatty Alcohols / metabolism
  • Gas Chromatography-Mass Spectrometry
  • Hydroxylation
  • Mixed Function Oxygenases / chemistry
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism*


  • Alkanes
  • Fatty Acids
  • Fatty Alcohols
  • Recombinant Proteins
  • Mixed Function Oxygenases
  • peroxygenase