Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 1:76:264-71.
doi: 10.1016/j.neuroimage.2013.03.022. Epub 2013 Mar 22.

Highlighting manganese dynamics in the nervous system of Aplysia californica using MEMRI at ultra-high field

Affiliations

Highlighting manganese dynamics in the nervous system of Aplysia californica using MEMRI at ultra-high field

Ileana O Jelescu et al. Neuroimage. .

Abstract

Exploring the pathways of manganese (Mn(2+)) transport in the nervous system becomes of interest as many recent studies use Mn(2+) as a neural tract tracer in mammals. In this study, we performed manganese enhanced MRI (MEMRI) at 17.2 T on the buccal ganglia of Aplysia californica. The main advantage of this model over mammalian systems is that it contains networks of large identified neurons. Using Mn(2+) retrograde transport along selected nerves, we first validated the mapping of motor neurons' axonal projections into peripheral nerves, previously obtained from optical imaging (Morton et al., 1991). This protocol was found not to alter the functional properties of the neuronal network. Second, we compared the Mn(2+) dynamics inside the ganglia in the presence or absence of chemical stimulation. We found that 2h of stimulation with the modulatory transmitter dopamine increased the extent of areas of intermediate signal enhancement caused by manganese accumulation. In the absence of dopamine, an overall decrease of the enhanced areas in favor of non-enhanced areas was found, as a result of natural Mn(2+) washout. This supports the hypothesis that, upon activation, Mn(2+) is released from labeled neurons and captured by other, initially unlabeled, neurons. However, the latter could not be clearly identified due to lack of sensitivity and multiplicity of possible pathways starting from labeled cells. Nonetheless, the Aplysia buccal ganglia remain a well-suited model for attempting to visualize Mn(2+) transport from neuron to neuron upon activation, as well as for studying dopaminergic modulation in a motor network.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources