PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells

Cell Biol Toxicol. 2013 Jun;29(3):143-57. doi: 10.1007/s10565-013-9242-5. Epub 2013 Mar 24.


It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf2-mediated defenses, such as HO-1 expression, against oxidative stress induced by PM(2.5) through the PI3K/AKT signaling pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Dose-Response Relationship, Drug
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Gene Expression Regulation / drug effects
  • Glutamate-Cysteine Ligase / genetics
  • Glutamate-Cysteine Ligase / metabolism
  • Heme Oxygenase-1 / genetics
  • Heme Oxygenase-1 / metabolism
  • Humans
  • NAD(P)H Dehydrogenase (Quinone) / genetics
  • NAD(P)H Dehydrogenase (Quinone) / metabolism
  • NF-E2-Related Factor 2 / antagonists & inhibitors
  • NF-E2-Related Factor 2 / genetics*
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress / drug effects
  • Particulate Matter / pharmacology*
  • Phosphatidylinositol 3-Kinases / genetics*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Transport
  • Proto-Oncogene Proteins c-akt / genetics*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Pulmonary Alveoli / cytology
  • Pulmonary Alveoli / drug effects*
  • Pulmonary Alveoli / metabolism
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Reactive Oxygen Species
  • Signal Transduction / drug effects


  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Particulate Matter
  • RNA, Small Interfering
  • Reactive Oxygen Species
  • HMOX1 protein, human
  • Heme Oxygenase-1
  • NAD(P)H Dehydrogenase (Quinone)
  • NQO1 protein, human
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Glutamate-Cysteine Ligase