Activation of the EGF receptor tyrosine kinase by divalent metal ions: comparison of holoreceptor and isolated kinase domain properties

Biochim Biophys Acta. 1990 May 22;1052(3):489-98. doi: 10.1016/0167-4889(90)90160-f.

Abstract

The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the cytoplasmic TKD. Me2+ interactions with the cytoplasmic kinase domain apparently result in conformational changes which regulate the levels of tyrosine kinase activity, influence the degree to which this activity is responsive to EGF, and probably account for the effects of Me2+ on the aggregation state of the receptor (Carraway, K.L., III, Koland, J.G. and Cerione, R.A. (1989) J. Biol. Chem. 264, 8699-8707). In general, Mg2(+)-induced conformation changes prime the receptor for activation by EGF, while Mn2+ can fully activate the receptor tyrosine kinase and thereby short-circuit growth factor control.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Enzyme Activation / drug effects
  • ErbB Receptors / drug effects
  • ErbB Receptors / metabolism*
  • Humans
  • Kinetics
  • Magnesium / pharmacology*
  • Manganese / pharmacology*
  • Protein Conformation
  • Protein Denaturation
  • Protein-Tyrosine Kinases / metabolism*
  • Trypsin / pharmacology

Substances

  • Manganese
  • ErbB Receptors
  • Protein-Tyrosine Kinases
  • Trypsin
  • Magnesium