Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;51(5):437-45.
doi: 10.1097/MLR.0b013e318287d57d.

Using enriched observational data to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients

Affiliations

Using enriched observational data to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients

Ying P Tabak et al. Med Care. 2013 May.

Abstract

Background: Growth and development in early childhood are associated with rapid physiological changes. We sought to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients using objective physiological variables on admission in addition to administrative variables.

Methods: Age-specific laboratory and vital sign variables were crafted for neonates (up to 30 d old), infants/toddlers (1-23 mo), and children (2-17 y). We fit 3 logistic regression models, 1 for each age group, using a derivation cohort comprising admissions from 2000-2001 in 215 hospitals. We validated the models with a separate validation cohort comprising admissions from 2002-2007 in 62 hospitals. We used the c statistic to assess model fit.

Results: The derivation cohort comprised 93,011 neonates (0.55% mortality), 46,152 infants/toddlers (0.37% mortality), and 104,010 children (0.40% mortality). The corresponding numbers of admissions (mortality rates) for the validation cohort were 162,131 (0.50%), 33,818 (0.09%), and 73,362 (0.20%), respectively. The c statistics for the 3 models were 0.94, 0.91, and 0.92, respectively, for the derivation cohort and 0.91, 0.86, and 0.93, respectively, for the validation cohort. The relative contributions of physiological versus administrative variables to the model fit were 52% versus 48% (neonates), 93% versus 7% (infants/toddlers), and 82% versus 18% (children).

Conclusions: The thresholds for physiological determinants varied by age. Common physiological variables assessed on admission contributed significantly to predicting mortality for hospitalized pediatric patients. These models may have practical utility in risk adjustment for pediatric outcomes and comparative effectiveness research when physiological data are captured through the electronic medical record.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources