Although the medicinal mushroom Hericium erinaceus is used extensively in traditional Chinese medicine to treat chronic superficial gastritis, the underlining pharmaceutical mechanism is yet to be fully understood. In this study, minimum inhibitory concentration (MIC) values of extracts prepared from the fruiting bodies of 14 mushroom species (H. erinaceus, Ganoderma lucidum, Cordyceps militaris, Pleurotus eryngii, P. ostreatus, Agrocybe aegerita, Lentinus edodes, Agaricus brasiliensis, A. bisporus, Coprinus comatus, Grifola frondosa, Phellinus igniarius, Flammulina velutipes, and Hypsizygus marmoreus) were determined against Helicobacter pylori using laboratory strains of ATCC 43504 and SS1 as well as 9 clinical isolates via an in vitro microplate agar diffusion assay. Ethanol extracts (EEs) of 12 mushrooms inhibited the growth of H. pylori in vitro, with MIC values <3 mg/mL. EEs of H. erinaceus and G. lucidum also inhibited Staphylococcus aureus (MIC 7360;10 mg/mL) but had no effect on the growth of two Escherichia coli test strains (MIC >10 mg/mL). MIC values of ethyl acetate fractions (EAFs) of H. erinaceus against 9 clinical isolates of H. pylori ranged between 62.5 and 250 µg/mL. The bacteriostatic activity of EAFs was found to be concentration-dependant, and the half maximal inhibitory concentration and minimum bactericidal concentration values for H. pylori ATCC 43504 were 73.0 and 200 µg/mL, respectively. The direct inhibitory effect of EEs and EAFs of H. erinaceus against H. pylori could be another pharmaceutical mechanism of medicinal mushrooms-besides the immunomodulating effect of polysaccharides, suggested previously-in the treatment of H. pylori-associated gastrointestinal disorders. Further research to identify the active component(s) is currently undertaking in our laboratory.