Quantifying cellular dynamics by fluorescence resonance energy transfer (FRET) microscopy
- PMID: 23559306
- DOI: 10.1002/0471142301.ns0522s63
Quantifying cellular dynamics by fluorescence resonance energy transfer (FRET) microscopy
Abstract
The cell is a spatially organized system whose function emerges from the complex interaction of molecular components. Such local interaction of nanometer-sized molecules generates patterns that span throughout the cell. Those patterns, in turn, regulate the molecular interactions. Understanding such simultaneous bidirectional causation requires quantifying the spatio-temporal progression of biochemical reactions in the context of a living cell. Due to its ability to resolve micrometer-sized structures, biological microscopy has been instrumental to the discovery and understanding of living systems. Functional fluorescence microscopy allows a cellular dynamic topographic map of proteins to be overlaid with topological information on the causality that determines protein state. Here we describe how Förster/fluorescence resonance energy transfer (FRET) can be used to measure the phosphorylation state of proteins in the context of the cell.
Similar articles
-
Imaging protein-protein interactions by Fluorescence Resonance Energy Transfer (FRET) microscopy.Curr Protoc Neurosci. 2006 Feb;Chapter 5:Unit 5.22. doi: 10.1002/0471142301.ns0522s34. Curr Protoc Neurosci. 2006. PMID: 18428638
-
Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.Annu Rev Biochem. 2011;80:357-73. doi: 10.1146/annurev-biochem-072909-094736. Annu Rev Biochem. 2011. PMID: 21529159 Review.
-
Förster resonance energy transfer (FRET) microscopy for monitoring biomolecular interactions.Methods Mol Biol. 2015;1278:329-39. doi: 10.1007/978-1-4939-2425-7_20. Methods Mol Biol. 2015. PMID: 25859959
-
Analysis of receptor-receptor interaction by combined application of FRET and microscopy.Methods Cell Biol. 2013;117:243-65. doi: 10.1016/B978-0-12-408143-7.00014-1. Methods Cell Biol. 2013. PMID: 24143982
-
FRET microscopy in the living cell: different approaches, strengths and weaknesses.Bioessays. 2012 May;34(5):369-76. doi: 10.1002/bies.201100086. Epub 2012 Mar 13. Bioessays. 2012. PMID: 22415767 Review.
Cited by
-
Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins.Genome Res. 2023 Aug;33(8):1242-1257. doi: 10.1101/gr.277755.123. Epub 2023 Jul 24. Genome Res. 2023. PMID: 37487647 Free PMC article.
-
Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system.J Cell Biol. 2019 Mar 4;218(3):1055-1065. doi: 10.1083/jcb.201812020. Epub 2019 Jan 18. J Cell Biol. 2019. PMID: 30659100 Free PMC article.
-
Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules.Nat Commun. 2023 Jun 22;14(1):3710. doi: 10.1038/s41467-023-39277-9. Nat Commun. 2023. PMID: 37349283 Free PMC article.
-
The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1.J Cell Biol. 2019 Mar 4;218(3):783-797. doi: 10.1083/jcb.201812021. Epub 2019 Jan 18. J Cell Biol. 2019. PMID: 30659099 Free PMC article.
-
Defects in lipid homeostasis reflect the function of TANGO2 in phospholipid and neutral lipid metabolism.Elife. 2023 Mar 24;12:e85345. doi: 10.7554/eLife.85345. Elife. 2023. PMID: 36961129 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
