Just getting into cells is not enough: mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle's ability to overcome gemcitabine resistance caused by RRM1 overexpression

J Control Release. 2013 Jul 10;169(1-2):17-27. doi: 10.1016/j.jconrel.2013.03.033. Epub 2013 Apr 6.

Abstract

Gemcitabine is a deoxycytidine analog that is widely used in the chemotherapy of many solid tumors. However, acquired tumor cell resistance often limits its use. Previously, we discovered that 4-(N)-stearoyl gemcitabine solid lipid nanoparticles (4-(N)-GemC18-SLNs) can overcome multiple acquired gemcitabine resistance mechanisms, including RRM1 overexpression. The present study was designed to elucidate the mechanisms underlying the 4-(N)-GemC18-SLNs' ability to overcome gemcitabine resistance. The 4-(N)-GemC18 in the 4-(N)-GemC18-SLNs entered tumor cells due to clathrin-mediated endocytosis of the 4-(N)-GemC18-SLNs into the lysosomes of the cells, whereas the 4-(N)-GemC18 alone in solution entered cells by diffusion. We substantiated that it is the way the 4-(N)-GemC18-SLNs deliver the 4-(N)-GemC18 into tumor cells that allows the gemcitabine hydrolyzed from the 4-(N)-GemC18 to be more efficiently converted into its active metabolite, gemcitabine triphosphate (dFdCTP), and thus more potent against gemcitabine-resistant tumor cells than 4-(N)-GemC18 or gemcitabine alone. Moreover, we also showed that the RRM1-overexpressing tumor cells were also cross-resistant to cytarabine, another nucleoside analog commonly used in cancer therapy, and 4-(N)-stearoyl cytarabine carried by solid lipid nanoparticles can also overcome the resistance. Therefore, formulating the long-chain fatty acid amide derivatives of nucleoside analogs into solid lipid nanoparticles may represent a platform technology to increase the antitumor activity of the nucleoside analogs and to overcome tumor cell resistance to them.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimetabolites, Antineoplastic / administration & dosage*
  • Antimetabolites, Antineoplastic / pharmacokinetics
  • Antimetabolites, Antineoplastic / pharmacology*
  • Antimetabolites, Antineoplastic / therapeutic use
  • Cell Line, Tumor
  • Deoxycytidine / administration & dosage
  • Deoxycytidine / analogs & derivatives*
  • Deoxycytidine / pharmacokinetics
  • Deoxycytidine / pharmacology
  • Deoxycytidine / therapeutic use
  • Diffusion
  • Drug Carriers / chemistry*
  • Drug Resistance, Neoplasm
  • Endocytosis
  • Female
  • Hydrolysis
  • Lipids / chemistry
  • Lung / drug effects
  • Lung / metabolism
  • Lung / pathology
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / pathology
  • Mice
  • Nanoparticles / chemistry
  • Ribonucleoside Diphosphate Reductase
  • Ribonucleotide Reductases / genetics*
  • Up-Regulation

Substances

  • 4-(N)-stearoylgemcitabine
  • Antimetabolites, Antineoplastic
  • Drug Carriers
  • Lipids
  • Deoxycytidine
  • Ribonucleotide Reductases
  • Ribonucleoside Diphosphate Reductase
  • Rrm1 protein, mouse