Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat

PLoS One. 2013;8(4):e59284. doi: 10.1371/journal.pone.0059284. Epub 2013 Apr 3.

Abstract

Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustics
  • Animals
  • Bangladesh
  • Dolphins / physiology*
  • Echolocation
  • Ecosystem*
  • Pitch Perception
  • Rivers*
  • Sound
  • Sound Spectrography

Grants and funding

This study was made possible through the logistical and field support of the Bangladesh Cetacean Diversity Project of the Wildlife Conservation Society, and funded by frame grants from the Danish Natural Science Foundation to PTM. FHJ was supported by the PhD School of Aquatic Sciences, Denmark, and is currently funded by a postdoctoral fellowship from the Danish Council for Independent Research | Natural Sciences. VMJ was supported by a fellowship of the Wissenschaftskolleg Berlin. PTM was supported by frame grants from the Danish Natural Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.