Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences

Brain Res Dev Brain Res. 1990 May 1;53(2):215-21. doi: 10.1016/0165-3806(90)90009-n.

Abstract

In Experiment 1, infant rats were implanted with a stimulating electrode in the medial forebrain bundle/lateral hypothalamus (MFB/LH) on postnatal day 12 (PN12). Four to 6 hours later, the pups underwent associative olfactory conditioning, with half of the pups trained with 30 temporal pairings of odor (5 s) and MFB/LH stimulation (200 Hz, 300 ms), and the other half trained with random presentations of odor and MFB/LH stimulation. On PN13, pups were tested for: (1) behavioral preference for the conditioned odor; (2) focal glomerular layer 2-DG uptake to the odor; or (3) mitral/tufted cell single-unit response pattern to the odor. Odor-MFB/LH pairings produced a relative behavioral preference, enhanced focal 2-DG uptake and a modified mitral/tufted cell response pattern to the conditioned odor. Random training resulted in none of these changes. In Experiment 2, PN12 pups were anesthetized with urethane and single-unit responses of mitral/tufted cells to MFB/LH stimulation were examined. MFB/LH stimulation produced a brief suppression of mitral/tufted cell activity followed either by a prolonged excitation (18/30 cells; 8-10 s duration) or a prolonged suppression (12/30 cells; 10-30 s). These results suggest that pairing olfactory nerve input with MFB/LH stimulation modifies subsequent behavioral and physiological responses to olfactory nerve input alone. Furthermore, the prolonged olfactory bulb response to MFB/LH stimulation may be critical in this modification.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Central Nervous System / physiology*
  • Conditioning, Classical / physiology*
  • Electric Stimulation
  • Female
  • Hypothalamic Area, Lateral / physiology*
  • Male
  • Medial Forebrain Bundle / physiology*
  • Odorants*
  • Olfactory Pathways / physiology*
  • Rats
  • Rats, Inbred Strains
  • Reward*