Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
- PMID: 23583748
- PMCID: PMC3767485
- DOI: 10.1016/j.neuroimage.2013.03.066
Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
Abstract
Multivariate pattern analysis (MVPA) methods such as support vector machines (SVMs) have been increasingly applied to fMRI and sMRI analyses, enabling the detection of distinctive imaging patterns. However, identifying brain regions that significantly contribute to the classification/group separation requires computationally expensive permutation testing. In this paper we show that the results of SVM-permutation testing can be analytically approximated. This approximation leads to more than a thousandfold speedup of the permutation testing procedure, thereby rendering it feasible to perform such tests on standard computers. The speedup achieved makes SVM based group difference analysis competitive with standard univariate group difference analysis methods.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Deriving statistical significance maps for SVM based image classification and group comparisons.Med Image Comput Comput Assist Interv. 2012;15(Pt 1):723-30. doi: 10.1007/978-3-642-33415-3_89. Med Image Comput Comput Assist Interv. 2012. PMID: 23285616 Free PMC article.
-
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging.Med Image Anal. 2015 Aug;24(1):190-204. doi: 10.1016/j.media.2015.06.008. Epub 2015 Jun 25. Med Image Anal. 2015. PMID: 26210913 Free PMC article.
-
MIDAS: Regionally linear multivariate discriminative statistical mapping.Neuroimage. 2018 Jul 1;174:111-126. doi: 10.1016/j.neuroimage.2018.02.060. Epub 2018 Mar 7. Neuroimage. 2018. PMID: 29524624 Free PMC article.
-
Recent developments in multivariate pattern analysis for functional MRI.Neurosci Bull. 2012 Aug;28(4):399-408. doi: 10.1007/s12264-012-1253-3. Neurosci Bull. 2012. PMID: 22833038 Free PMC article. Review.
-
Frontiers for the Early Diagnosis of AD by Means of MRI Brain Imaging and Support Vector Machines.Curr Alzheimer Res. 2016;13(5):509-33. doi: 10.2174/1567205013666151116141705. Curr Alzheimer Res. 2016. PMID: 26567735 Review.
Cited by
-
Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data.Comput Struct Biotechnol J. 2023 May 23;21:3183-3195. doi: 10.1016/j.csbj.2023.05.005. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37333861 Free PMC article.
-
Determining and Validating Population Differences in Magnetic Resonance Angiography Using Sparse Representation.Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3101-3108. doi: 10.1109/bibm55620.2022.9994989. Epub 2023 Jan 2. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022. PMID: 37179739 Free PMC article.
-
Explainable AI: A review of applications to neuroimaging data.Front Neurosci. 2022 Dec 1;16:906290. doi: 10.3389/fnins.2022.906290. eCollection 2022. Front Neurosci. 2022. PMID: 36583102 Free PMC article.
-
Disentangling Alzheimer's disease neurodegeneration from typical brain ageing using machine learning.Brain Commun. 2022 May 7;4(3):fcac117. doi: 10.1093/braincomms/fcac117. eCollection 2022. Brain Commun. 2022. PMID: 35611306 Free PMC article.
-
Machine Learning in Healthcare.Curr Genomics. 2021 Dec 16;22(4):291-300. doi: 10.2174/1389202922666210705124359. Curr Genomics. 2021. PMID: 35273459 Free PMC article. Review.
References
-
- Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11:805–821. - PubMed
-
- Bishop CM. Pattern Recognition and Machine Learning (Information Science and Statistics) 1st ed. Springer; 2007. 2006. corr. 2nd printing edition.
-
- Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998;2:121–167.
-
- Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2. 2011;27:1–27. 27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
