Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation

PLoS Comput Biol. 2013 Apr;9(4):e1002963. doi: 10.1371/journal.pcbi.1002963. Epub 2013 Apr 4.

Abstract

Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers / analysis*
  • Blood Proteins / analysis*
  • Calibration
  • Cohort Studies
  • Computational Biology / methods*
  • Enzyme-Linked Immunosorbent Assay
  • Graft Rejection
  • Heart Failure / therapy
  • Heart Transplantation*
  • Humans
  • Inflammation
  • Mass Spectrometry
  • Proteome / analysis
  • Proteomics / methods*

Substances

  • Biomarkers
  • Blood Proteins
  • Proteome

Grants and funding

GVCF was supported by an IBM Institutes of Innovation Fellowship Award. This work was supported by the following major funding sources: NCE CECR Prevention of Organ Failure (PROOF) Centre of Excellence and Genome Canada, Novartis Pharma, IBM, and Genome British Columbia. Other funding sources include Astellas, Vancouver Hospital Foundation, St. Paul's Hospital Foundation, University of British Columbia VP Research, snd Transplant Research Foundation. The PROOF Centre also provided input on study design, data collection and analysis, decision to publish and preparation of the manuscript. Other funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.