Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 496 (7445), 329-33

A Dust-Obscured Massive Maximum-Starburst Galaxy at a Redshift of 6.34


A Dust-Obscured Massive Maximum-Starburst Galaxy at a Redshift of 6.34

Dominik A Riechers et al. Nature.


Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

Comment in

Similar articles

See all similar articles

Cited by 13 articles

  • Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8.
    Smit R, Bouwens RJ, Carniani S, Oesch PA, Labbé I, Illingworth GD, van der Werf P, Bradley LD, Gonzalez V, Hodge JA, Holwerda BW, Maiolino R, Zheng W. Smit R, et al. Nature. 2018 Jan 10;553(7687):178-181. doi: 10.1038/nature24631. Nature. 2018. PMID: 29323299
  • Galaxy growth in a massive halo in the first billion years of cosmic history.
    Marrone DP, Spilker JS, Hayward CC, Vieira JD, Aravena M, Ashby MLN, Bayliss MB, Béthermin M, Brodwin M, Bothwell MS, Carlstrom JE, Chapman SC, Chen CC, Crawford TM, Cunningham DJM, De Breuck C, Fassnacht CD, Gonzalez AH, Greve TR, Hezaveh YD, Lacaille K, Litke KC, Lower S, Ma J, Malkan M, Miller TB, Morningstar WR, Murphy EJ, Narayanan D, Phadke KA, Rotermund KM, Sreevani J, Stalder B, Stark AA, Strandet ML, Tang M, Weiß A. Marrone DP, et al. Nature. 2018 Jan 4;553(7686):51-54. doi: 10.1038/nature24629. Epub 2017 Dec 6. Nature. 2018. PMID: 29211721
  • Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.
    Decarli R, Walter F, Venemans BP, Bañados E, Bertoldi F, Carilli C, Fan X, Farina EP, Mazzucchelli C, Riechers D, Rix HW, Strauss MA, Wang R, Yang Y. Decarli R, et al. Nature. 2017 May 24;545(7655):457-461. doi: 10.1038/nature22358. Nature. 2017. PMID: 28541326 Free PMC article.
  • A massive, quiescent galaxy at a redshift of 3.717.
    Glazebrook K, Schreiber C, Labbé I, Nanayakkara T, Kacprzak GG, Oesch PA, Papovich C, Spitler LR, Straatman CM, Tran KH, Yuan T. Glazebrook K, et al. Nature. 2017 Apr 5;544(7648):71-74. doi: 10.1038/nature21680. Nature. 2017. PMID: 28382981
  • A massive, quiescent, population II galaxy at a redshift of 2.1.
    Kriek M, Conroy C, van Dokkum PG, Shapley AE, Choi J, Reddy NA, Siana B, van de Voort F, Coil AL, Mobasher B. Kriek M, et al. Nature. 2016 Dec 7;540(7632):248-251. doi: 10.1038/nature20570. Nature. 2016. PMID: 27929014
See all "Cited by" articles


    1. Nature. 2010 Feb 11;463(7282):781-4 - PubMed
    1. Nature. 2011 Feb 10;470(7333):233-5 - PubMed
    1. Nature. 2003 Apr 17;422(6933):695-8 - PubMed
    1. Nature. 2009 Feb 5;457(7230):699-701 - PubMed
    1. Nature. 2010 Nov 4;468(7320):49-55 - PubMed