Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Apr;10(2):S12-6.
doi: 10.1513/AnnalsATS.201207-036OT.

Molecular determinants of lung development

Affiliations
Review

Molecular determinants of lung development

Edward E Morrisey et al. Ann Am Thorac Soc. 2013 Apr.

Abstract

Development of the pulmonary system is essential for terrestrial life. The molecular pathways that regulate this complex process are beginning to be defined, and such knowledge is critical to our understanding of congenital and acquired lung diseases. A recent workshop was convened by the National Heart, Lung, and Blood Institute to discuss the developmental principles that regulate the formation of the pulmonary system. Emerging evidence suggests that key developmental pathways not only regulate proper formation of the pulmonary system but are also reactivated upon postnatal injury and repair and in the pathogenesis of human lung diseases. Molecular understanding of early lung development has also led to new advances in areas such as generation of lung epithelium from pluripotent stem cells. The workshop was organized into four different topics, including early lung cell fate and morphogenesis, mechanisms of lung cell differentiation, tissue interactions in lung development, and environmental impact on early lung development. Critical points were raised, including the importance of epigenetic regulation of lung gene expression, the dearth of knowledge on important mesenchymal lineages within the lung, and the interaction between the developing pulmonary and cardiovascular system. This manuscript describes the summary of the discussion along with general recommendations to overcome the gaps in knowledge in lung developmental biology.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8–23. - PMC - PubMed
    1. Minoo P, Su G, Drum H, Bringas P, Kimura S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol. 1999;209:60–71. - PubMed
    1. Maquet E, et al. Lethal respiratory failure and mild primary hypothyroidism in a term girl with a de novo heterozygous mutation in the TITF1/NKX2.1 gene. J Clin Endocrinol Metab. 2009;94:197–203. - PubMed
    1. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136:2297–2307. - PMC - PubMed
    1. Guseh JS, Bores SA, Stanger BZ, Zhou Q, Anderson WJ, Melton DA, Rajagopal J. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development. 2009;136:1751–1759. - PMC - PubMed

Publication types