G protein-coupled inwardly rectifying K⁺ channels (GIRK) are important in the regulation of heart rate and atrial electrophysiology. GIRK channels are activated by G protein-coupled receptors, including muscarinic M₂ receptors and adenosine A₁ receptors. The aim of this study was to characterize and compare the electrophysiological effects of acetylcholine (ACh) and adenosine on GIRK channels in rat atria. Action potential duration at 90% repolarization (APD₉₀), effective refractory period (ERP), and resting membrane potential (RMP) were investigated in isolated rat atria by intracellular recordings. Both the adenosine analog N6-cyclopentyladenosine (CPA) and ACh profoundly shortened APD₉₀ and ERP and hyperpolarized the RMP. No additive or synergistic effect of CPA and ACh coapplication was observed. To antagonize GIRK channel activation, the specific inhibitor rTertiapin Q (TTQ) was applied. The coapplication of TTQ reversed the CPA and ACh-induced effects. When TTQ was applied without exogenous receptor activator, both APD₉₀ and ERP were prolonged and RMP was depolarized, confirming a basal activity of the GIRK current. The results reveal that activation of A₁ and M₂ receptors has a profound and equal effect on the electrophysiology in rat atrium. This effect is to a major extent mediated through GIRK channels. Furthermore, these results support the notion that atrial GIRK currents from healthy hearts have a basal component and additional activation can be mediated via at least 2 different receptor mechanisms.