Nonlinear femtosecond laser induced scanning tunneling microscopy

J Chem Phys. 2013 Apr 21;138(15):154202. doi: 10.1063/1.4800965.

Abstract

We demonstrate ultrafast laser driven nonlinear scanning tunneling microscopy (STM), under ambient conditions. The design is an adaptation of the recently introduced cross-polarized double beat method, whereby z-polarized phase modulated fields are tightly focused at a tunneling junction consisting of a sharp tungsten tip and an optically transparent gold film as substrate. We demonstrate the prerequisites for ultrafast time-resolved STM through an operative mechanism of nonlinear laser field-driven tunneling. The spatial resolution of the nonlinear laser driven STM is determined by the local field intensity. Resolution of 0.3 nm-10 nm is demonstrated for the intensity dependent, exponential tunneling range. The demonstration is carried out on a junction consisting of tungsten tip and gold substrate. Nano-structured gold is used for imaging purposes, to highlight junction plasmon controlled tunneling in the conductivity limit.