Evolutionary links between circadian clocks and photoperiodic diapause in insects

Integr Comp Biol. 2013 Jul;53(1):131-43. doi: 10.1093/icb/ict023. Epub 2013 Apr 24.


In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda-Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock's essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biological Evolution*
  • Circadian Clocks / physiology*
  • Circadian Rhythm Signaling Peptides and Proteins / metabolism*
  • Diapause, Insect / physiology*
  • Insecta / physiology*
  • Models, Biological
  • Photoperiod*


  • Circadian Rhythm Signaling Peptides and Proteins