Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2013 Sep;36(9):2530-5.
doi: 10.2337/dc12-2221. Epub 2013 Apr 30.

Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load

Affiliations
Free PMC article
Randomized Controlled Trial

Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load

M Yanina Pepino et al. Diabetes Care. .
Free PMC article

Abstract

Objective: Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects.

Research design and methods: Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m(2)) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤ 2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of β-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics.

Results: Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the β-cell response to glucose.

Conclusions: These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS.

Trial registration: ClinicalTrials.gov NCT01128829.

Figures

Figure 1
Figure 1
Mean plasma glucose (A), insulin (B), C-peptide (C), and glucagon (D) concentrations in obese subjects after drinking either sucralose or water 10 min before ingestion of a 75-g glucose load (given at time = 0 min). *Value significantly different from corresponding water condition value, P < 0.004.
Figure 2
Figure 2
Mean plasma GIP (A) and active GLP-1 (B) concentrations in obese subjects after drinking either sucralose or water 10 min before ingestion of a 75-g glucose load (given at time = 0 min).
Figure 3
Figure 3
ISR in response to a glucose load after subjects drank either sucralose 10 min before ingestion of 75 g glucose (given at time = 0 min). Total ISR (A) and ISRdynamic and ISRstatic components (B). *Value significantly different from corresponding water condition value, P < 0.002.

Comment in

Similar articles

See all similar articles

Cited by 46 articles

See all "Cited by" articles

References

    1. Sylvetsky AC, Welsh JA, Brown RJ, Vos MB. Low-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr 2012;96:640–646 - PMC - PubMed
    1. Gardner C, Wylie-Rosett J, Gidding SS, et al. American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular Disease in the Young. American Diabetes Association Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2012;35:1798–1808 - PMC - PubMed
    1. Raben A, Richelsen B. Artificial sweeteners: a place in the field of functional foods? Focus on obesity and related metabolic disorders. Curr Opin Clin Nutr Metab Care 2012;15:597–604 - PubMed
    1. Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 2007;104:15069–15074 - PMC - PubMed
    1. Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 2007;104:15075–15080 - PMC - PubMed

Publication types

Associated data

Feedback