Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits

ACS Chem Neurosci. 2013 Jul 17;4(7):1026-48. doi: 10.1021/cn400086m. Epub 2013 May 23.


Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Allosteric Regulation / drug effects
  • Allosteric Regulation / physiology
  • Alzheimer Disease / drug therapy
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / physiopathology
  • Cognition Disorders / drug therapy
  • Cognition Disorders / metabolism*
  • Cognition Disorders / physiopathology
  • Drug Discovery
  • Humans
  • Ligands
  • Receptor, Muscarinic M1 / metabolism*
  • Schizophrenia / drug therapy
  • Schizophrenia / metabolism*
  • Schizophrenia / physiopathology


  • Ligands
  • Receptor, Muscarinic M1