An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs

Structure. 2013 Jun 4;21(6):1007-17. doi: 10.1016/j.str.2013.04.005. Epub 2013 May 9.

Abstract

LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Binding Sites
  • Intracellular Signaling Peptides and Proteins / chemistry*
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Binding
  • Protein Conformation
  • Sequence Homology, Amino Acid

Substances

  • GPSM2 protein, human
  • Intracellular Signaling Peptides and Proteins