Mechanical forces in lymphatic vascular development and disease

Cell Mol Life Sci. 2013 Nov;70(22):4341-54. doi: 10.1007/s00018-013-1358-5. Epub 2013 May 12.


The lymphatic vasculature is essential for fluid homeostasis and transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a hierarchical network of blind-ended lymphatic capillaries and collecting lymphatic vessels, both lined by lymphatic endothelial cells (LECs). The low hydrostatic pressure in lymphatic capillaries, their loose intercellular junctions, and attachment to the surrounding extracellular matrix (ECM) permit passage of extravasated blood plasma from the interstitium into the lumen of the lymphatic capillaries. It is generally thought that interstitial fluid accumulation leads to a swelling of the ECM, to which the LECs of lymphatic capillaries adhere, for example via anchoring filaments. As a result, LECs are pulled away from the vascular lumen, the junctions open, and fluid enters the lymphatic vasculature. The collecting lymphatic vessels then gather the plasma fluid from the capillaries and carry it through the lymph nodes to the blood circulation. The collecting vessels contain intraluminal bicuspid valves that prevent fluid backflow, and are embraced by smooth muscle cells that contribute to fluid transport. Although the lymphatic vessels are regular subject to mechanical strain, our knowledge of its influence on lymphatic development and pathologies is scarce. Here, we discuss the mechanical forces and molecular mechanisms regulating lymphatic vascular growth and maturation in the developing mouse embryo. We also consider how the lymphatic vasculature might be affected by similar mechanomechanisms in two pathological processes, namely cancer cell dissemination and secondary lymphedema.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Extracellular Matrix / metabolism
  • Humans
  • Integrins / metabolism
  • Lymphangiogenesis
  • Lymphatic Vessels / pathology
  • Lymphatic Vessels / physiology*
  • Lymphedema / metabolism
  • Lymphedema / pathology
  • Mechanotransduction, Cellular
  • Vascular Endothelial Growth Factor Receptor-3 / metabolism


  • Integrins
  • Vascular Endothelial Growth Factor Receptor-3